
Normalisation Task & Data Build Task
Contents
Normalisation Task ... 2

1NF .. 3

2NF .. 4

3NF .. 6

References .. 9

Data Build Task .. 10

Normalisation.. 10

Database Creation... 11

Data Insertion ... 14

Referential Integrity .. 15

Final Notes and Working Theory .. 16

Normalisation Task

Database normalisation can be described as the process of organising data in a database or table,
following a set of standard rules to reduce redundancy, speed up query processing and reduce required
disk space. We can also think about database normalisation as a way to organise tables in an anticipated
manner for the database users, such as, for example, having only contact details in a contact details
table and not invoice number (Microsoft, 2023). The rules applied are called normal forms (NF) and is
generally acceptable for data in a database to be organised till the 3rd Normal Form. More rules beyond
the 3rd Normal Form do exist, such as the Boyce-Cood Normal Form or, as otherwise called, the 3.5
Normal Form, but are “rarely used outside the academic context” (Rouse, 2014).

In this exercise, we are provided with an initial data table in an un-normalised form. The task is to
normalise the table down to the 3rd Normal Form by showing and explaining each subsequent step (1st
Normal Form, 2nd Normal Form, 3rd Normal Form).

The table headers look as per the below table and is in 0NF (Un-normalised):

Student
Number

Student
Name

Exam Score Support Date of Birth Course
Name

Exam
Boards

Teacher
Name

1001 Bob Baker 78 No 25/08/2001 Computer
Science
Maths
Physics

BCS

EdExcel
OCR

Mr Jones

Ms Parker
Mr Peters

1002 Sally Davies 55 Yes 02/10/1999 Maths
Biology
Music

AQA
WJEC
AQA

Mr Parker
Mr Patel
Ms Daniels

1003 Mark
Hanmill

90 No 05/06/1995 Computer
Science
Maths
Physics

BCS

EdExcel
OCR

Mr Jones

Ms Parker
Mr Peters

1004 Anas Ali 70 No 03/08/1990 Maths
Physics
Biology

AQA
OCR
WJEC

Ms Parker
Mr Peters
Mrs Patel

1005 Cheuk Yin 45 Yes 01/05/2022 Computer
Science
Maths
Music

BCS

EdExcel
AQA

Mr Jones

Ms Parker
Ms Daniels

1NF

A table is considered to be in 1NF, if it (Hillyer, 2005):

1. Contains only atomic/single values in each and every cell (e.g. a cell cannot have the date of
birth and date of school graduation at the same time or the address and the phone number at
the same time)

2. The data type/domain attribute needs to be of the same type for each column (e.g. a cell cannot
have date values and integer or text values at the same time)

3. Each column name should be unique and not be repeated.

The provided table presents the following issue, which is violating the constraint of atomic values:

- Columns ‘Course Name’, ‘Exam Boards’, and ‘Teacher Name’ are not atomic as they contain
multiple items. For this exercise, names, we will be considered atomic values as ‘full names’.

None of the other two constraints are violated.

We can also notice that duplicate values in each cell are horizontally distributed (a duplicate value in the
Course Name column corresponds to a value in the Exam Board column and the Teacher Name column)

In order to solve the issues, we split our table and reformat it by duplicating each row and keeping only
the atomic values. In cells where there are no atomic values, we keep the same data:

Student
Number

Student Name Exam
Score

Support Date of Birth Course Name Exam
Boards

Teacher
Name

1001 Bob Baker 78 No 25/08/2001 Computer Science BCS Mr Jones
1001 Bob Baker 78 No 25/08/2001 Maths EdExcel Ms Parker
1001 Bob Baker 78 No 25/08/2001 Physics OCR Mr Peters
1002 Sally Davies 55 Yes 02/10/1999 Maths AQA Mr Parker
1002 Sally Davies 55 Yes 02/10/1999 Biology WJEC Mr Patel
1002 Sally Davies 55 Yes 02/10/1999 Music AQA Ms Daniels
1003 Mark Hanmill 90 No 05/06/1995 Computer Science BCS Mr Jones
1003 Mark Hanmill 90 No 05/06/1995 Maths EdExcel Ms Parker
1003 Mark Hanmill 90 No 05/06/1995 Physics OCR Mr Peters
1004 Anas Ali 70 No 03/08/1990 Maths AQA Ms Parker

1004 Anas Ali 70 No 03/08/1990 Physics OCR Mr Peters
1004 Anas Ali 70 No 03/08/1990 Biology WJEC Mrs Patel
1005 Cheuk Yin 45 Yes 01/05/2022 Computer Science BCS Mr Jones
1005 Cheuk Yin 45 Yes 01/05/2022 Maths EdExcel Ms Parker
1005 Cheuk Yin 45 Yes 01/05/2022 Music AQA Ms Daniels

With a composite primary key in the columns Student Number and Course Name, the above table
satisfies all the requirements of the 1st Normal Form; therefore, it is in 1NF. Each observation (column)
may have duplicate values, but each instance (row) is unique.

2NF

A table is considered in 2NF, if it (Hillyer, 2005):

1. Is already in 1NF
2. Has no partial dependencies, meaning that every non-candidate key column should depend on

the whole identified candidate key (potential primary key)

The provided table presents the following issues violating the constraints of partial dependency:

- With identified multi-value candidate key of ‘Student Number’ and ‘Course Name’, we observe
that the columns ‘Exam Boards’ and ‘Teacher Name’ depend only on a part of the candidate key
which is the ‘Course Name’)

In order to solve the issue, we will need to split our table into two tables by adding a foreign key to
connect the two tables:

Student table

With primary key the Student Number

Student
Number

Student Name Exam
Score

Support Date of Birth

1001 Bob Baker 78 No 25/08/2001
1002 Sally Davies 55 Yes 02/10/1999
1003 Mark Hanmill 90 No 05/06/1995
1004 Anas Ali 70 No 03/08/1990
1005 Cheuk Yin 45 Yes 01/05/2022

Course Table

With composite primary key the Course Name and Student Number

Student
Number

Course Name Exam
Boards

Teacher
Name

1001 Computer Science BCS Mr Jones
1001 Maths EdExcel Ms Parker
1001 Physics OCR Mr Peters
1002 Maths AQA Mr Parker

1002 Biology WJEC Mr Patel
1002 Music AQA Ms Daniels
1003 Computer Science BCS Mr Jones
1003 Maths EdExcel Ms Parker
1003 Physics OCR Mr Peters
1004 Maths AQA Ms Parker
1004 Physics OCR Mr Peters
1004 Biology WJEC Mrs Patel
1005 Computer Science BCS Mr Jones
1005 Maths EdExcel Ms Parker
1005 Music AQA Ms Daniels

The duplicate values have also been removed from the Student table. We can observe that the Course
table has the same composite key as before, creating conflict with the 2NF requirements, as there are
partial dependencies with the Teacher Name being dependant on the course name only. For this reason
we split the table further:

Teacher Table

With the primary key being course name

Course Name Teacher Name
Computer Science Mr Jones
Maths Ms Parker
Physics Mr Peters
Biology Mr Patel
Music Ms Daniels

Course Table

With composite primary key student number and course name and foreign key the course name

Student
Number

Course Name Exam
Boards

1001 Computer Science BCS
1001 Maths EdExcel
1001 Physics OCR
1002 Maths AQA
1002 Biology WJEC
1002 Music AQA
1003 Computer Science BCS
1003 Maths EdExcel
1003 Physics OCR
1004 Maths AQA
1004 Physics OCR
1004 Biology WJEC
1005 Computer Science BCS
1005 Maths EdExcel
1005 Music AQA

The final tables are the below:

Teacher Table

With primary key teacher name and foreign key the course name

Course Name Teacher Name
Computer Science Mr Jones
Maths Ms Parker
Physics Mr Peters
Biology Mr Patel
Music Ms Daniels

Course Table

With composite primary key student number and course name

Student
Number

Course Name Exam
Boards

1001 Computer Science BCS
1001 Maths EdExcel
1001 Physics OCR
1002 Maths AQA
1002 Biology WJEC
1002 Music AQA
1003 Computer Science BCS
1003 Maths EdExcel
1003 Physics OCR
1004 Maths AQA
1004 Physics OCR
1004 Biology WJEC
1005 Computer Science BCS
1005 Maths EdExcel
1005 Music AQA

Student table

With primary key the student number

Student
Number

Student Name Exam
Score

Support Date of Birth

1001 Bob Baker 78 No 25/08/2001
1002 Sally Davies 55 Yes 02/10/1999
1003 Mark Hanmill 90 No 05/06/1995
1004 Anas Ali 70 No 03/08/1990
1005 Cheuk Yin 45 Yes 01/05/2022

The above tables satisfy all the requirements of the 2nd Normal Form therefore they are in 2NF.

3NF

For a table to be considered in 3NF it needs to (Hillyer, 2005):

1) Be already in 2NF
2) Have no transitive dependencies, meaning that every non key column should not depend on

non-key columns.

Due to the way that 2NF was achieved, all the tables already satisfy the 3rd Normal Form, and therefore
they are in 3NF.

The final tables are:

Teacher Table

With primary key teacher name and foreign key the course name

Course Name Teacher Name
Computer Science Mr Jones
Maths Ms Parker
Physics Mr Peters
Biology Mr Patel
Music Ms Daniels

Course Table

With composite primary key student number and course name

Student
Number

Course Name Exam
Boards

1001 Computer Science BCS
1001 Maths EdExcel
1001 Physics OCR
1002 Maths AQA
1002 Biology WJEC
1002 Music AQA
1003 Computer Science BCS
1003 Maths EdExcel
1003 Physics OCR
1004 Maths AQA
1004 Physics OCR
1004 Biology WJEC
1005 Computer Science BCS
1005 Maths EdExcel
1005 Music AQA

Student table

With primary key the student number

Student
Number

Student Name Exam
Score

Support Date of Birth

1001 Bob Baker 78 No 25/08/2001
1002 Sally Davies 55 Yes 02/10/1999
1003 Mark Hanmill 90 No 05/06/1995
1004 Anas Ali 70 No 03/08/1990
1005 Cheuk Yin 45 Yes 01/05/2022

References

Babar, Z. (n.d.) What is BCNF?. Available from: https://www.educative.io/answers/what-is-bcnf
[Accessed 28 April 2023].

Hillyer, M. (2005) An Introduction to Database Normalization. Available from:
https://users.dcc.uchile.cl/~mnmonsal/cc42a/guias/intronorm.pdf [Accessed 28 April 2023].

Microsoft. (2023) Description of the database normalization basics. Available from:
https://learn.microsoft.com/en-us/office/troubleshoot/access/database-normalization-description
[Accessed 28 April 2023].

Rouse, M. (2014) What Does Fourth Normal Form Mean?. Available from:
https://www.techopedia.com/definition/19453/fourth-normal-form-4nf [Accessed 28 April 2023].

https://www.educative.io/answers/what-is-bcnf
https://users.dcc.uchile.cl/%7Emnmonsal/cc42a/guias/intronorm.pdf
https://learn.microsoft.com/en-us/office/troubleshoot/access/database-normalization-description
https://www.techopedia.com/definition/19453/fourth-normal-form-4nf

Data Build Task

The data build task requires to create the actual relational database based on the tables of the
Normalisation Task. The database should have the proper schema created, with linked tables mapped
through the foreign keys, and primary key properly recorded. The database should enforce referential
integrity.

Normalisation

The tables that we start with from the Normalisation Task are the below:

Teacher Table

With primary key the Course Name

Course Name Teacher Name
Computer Science Mr Jones
Maths Ms Parker
Physics Mr Peters
Biology Mr Patel
Music Ms Daniels

Course Table

With composite primary key the Student Number and Course Name

Student
Number

Course Name Exam
Boards

1001 Computer Science BCS
1001 Maths EdExcel
1001 Physics OCR
1002 Maths AQA
1002 Biology WJEC
1002 Music AQA
1003 Computer Science BCS
1003 Maths EdExcel
1003 Physics OCR
1004 Maths AQA
1004 Physics OCR
1004 Biology WJEC
1005 Computer Science BCS
1005 Maths EdExcel
1005 Music AQA

Student table

With primary key the Student Number

Student
Number

Student Name Exam
Score

Support Date of Birth

1001 Bob Baker 78 No 25/08/2001
1002 Sally Davies 55 Yes 02/10/1999
1003 Mark Hanmill 90 No 05/06/1995
1004 Anas Ali 70 No 03/08/1990
1005 Cheuk Yin 45 Yes 01/05/2022

Even though the database was adequately normalized we have also added an additional table name
Exam Board, in order to ensure referential integrity. There was no need for an additional course table
listing only the courses as the Teacher table fulfils that purpose.

Database Creation

The database tables are in the below format:

The tables are created in SSMS (SQL Server) through the below script:

USE [dechi]
GO
/****** Object: Table [dbo].[Course] Script Date: 01/05/2023 09:37:13
******/
SET ANSI_NULLS ON

GO
SET QUOTED_IDENTIFIER ON
GO
CREATE TABLE [dbo].[Course](
 [Course Name] [varchar](50) NOT NULL,
 [Student Number] [int] NOT NULL,
 [Exam Boards] [varchar](50) NOT NULL,
 CONSTRAINT [PK_Course_1] PRIMARY KEY CLUSTERED
(
 [Course Name] ASC,
 [Student Number] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY =
OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]
GO
/****** Object: Table [dbo].[Exam Board] Script Date: 01/05/2023
09:37:13 ******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE TABLE [dbo].[Exam Board](
 [Exam Boards] [varchar](50) NOT NULL,
 CONSTRAINT [PK_Exam Board] PRIMARY KEY CLUSTERED
(
 [Exam Boards] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY =
OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]
GO
/****** Object: Table [dbo].[Student] Script Date: 01/05/2023 09:37:13
******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE TABLE [dbo].[Student](
 [Student Number] [int] NOT NULL,
 [Student Name] [varchar](50) NOT NULL,
 [Exam Score] [int] NOT NULL,
 [Support] [bit] NOT NULL,
 [Date of Birth] [date] NOT NULL,
 CONSTRAINT [PK_Student] PRIMARY KEY CLUSTERED
(
 [Student Number] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY =
OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]
GO
/****** Object: Table [dbo].[Teacher] Script Date: 01/05/2023 09:37:13
******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON

GO
CREATE TABLE [dbo].[Teacher](
 [Teacher Name] [varchar](50) NOT NULL,
 [Course Name] [varchar](50) NOT NULL,
 CONSTRAINT [PK_Teacher] PRIMARY KEY CLUSTERED
(
 [Course Name] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY =
OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]
GO
ALTER TABLE [dbo].[Course] WITH CHECK ADD CONSTRAINT [FK_Course_Exam
Board] FOREIGN KEY([Exam Boards])
REFERENCES [dbo].[Exam Board] ([Exam Boards])
GO
ALTER TABLE [dbo].[Course] CHECK CONSTRAINT [FK_Course_Exam Board]
GO
ALTER TABLE [dbo].[Course] WITH CHECK ADD CONSTRAINT [FK_Course_Student]
FOREIGN KEY([Student Number])
REFERENCES [dbo].[Student] ([Student Number])
GO
ALTER TABLE [dbo].[Course] CHECK CONSTRAINT [FK_Course_Student]
GO
ALTER TABLE [dbo].[Course] WITH CHECK ADD CONSTRAINT
[FK_Courses_Students_Teacher] FOREIGN KEY([Course Name])
REFERENCES [dbo].[Teacher] ([Course Name])
GO
ALTER TABLE [dbo].[Course] CHECK CONSTRAINT [FK_Courses_Students_Teacher]
GO
ALTER TABLE [dbo].[Exam Board] WITH CHECK ADD CONSTRAINT [FK_Exam
Board_Exam Board] FOREIGN KEY([Exam Boards])
REFERENCES [dbo].[Exam Board] ([Exam Boards])
GO
ALTER TABLE [dbo].[Exam Board] CHECK CONSTRAINT [FK_Exam Board_Exam Board]
GO
ALTER TABLE [dbo].[Teacher] WITH CHECK ADD CONSTRAINT
[FK_Teacher_Teacher] FOREIGN KEY([Course Name])
REFERENCES [dbo].[Teacher] ([Course Name])
GO
ALTER TABLE [dbo].[Teacher] CHECK CONSTRAINT [FK_Teacher_Teacher]
GO
ALTER TABLE [dbo].[Student] WITH CHECK ADD CONSTRAINT [CK_Stud_DoB]
CHECK ((getdate()>=[Date Of Birth]))
GO
ALTER TABLE [dbo].[Student] CHECK CONSTRAINT [CK_Stud_DoB]
GO
ALTER TABLE [dbo].[Student] WITH CHECK ADD CONSTRAINT
[CK_Stud_ExamScore] CHECK (([Exam Score]>=(0) AND [Exam Score]<=(100)))
GO
ALTER TABLE [dbo].[Student] CHECK CONSTRAINT [CK_Stud_ExamScore]
GO

Data Insertion

In order to check that our tables work as intended the data were added in the tables through the below
script:

INSERT INTO [Student] ([Student Number], [Student Name], [Exam Score],
[Support], [Date of Birth]) VALUES ('1001', 'Bob Baker', '78', 0, '2001-
08-25');
INSERT INTO [Student] ([Student Number], [Student Name], [Exam Score],
[Support], [Date of Birth]) VALUES ('1002', 'Sally Davies', '55', -1,
'1999-10-02');
INSERT INTO [Student] ([Student Number], [Student Name], [Exam Score],
[Support], [Date of Birth]) VALUES ('1003', 'Mark Hanmill', '90', 0,
'1995-06-05');
INSERT INTO [Student] ([Student Number], [Student Name], [Exam Score],
[Support], [Date of Birth]) VALUES ('1004', 'Anas Ali', '70', 0, '1990-08-
03');
INSERT INTO [Student] ([Student Number], [Student Name], [Exam Score],
[Support], [Date of Birth]) VALUES ('1005', 'Cheuk Yin', '45', -1, '2022-
05-01');

INSERT INTO Teacher ([Course Name], [Teacher Name]) VALUES ('Computer
Science', 'Mr Jones');
INSERT INTO Teacher ([Course Name], [Teacher Name]) VALUES ('Maths', 'Ms
Parker');
INSERT INTO Teacher ([Course Name], [Teacher Name]) VALUES ('Physics', 'Mr
Peters');
INSERT INTO Teacher ([Course Name], [Teacher Name]) VALUES ('Biology', 'Mr
Patel');
INSERT INTO Teacher ([Course Name], [Teacher Name]) VALUES ('Music', 'Ms
Daniels');

INSERT INTO [Exam Board] ([Exam Boards]) VALUES ('BCS');
INSERT INTO [Exam Board] ([Exam Boards]) VALUES ('EdExcel');
INSERT INTO [Exam Board] ([Exam Boards]) VALUES ('OCR');
INSERT INTO [Exam Board] ([Exam Boards]) VALUES ('AQA');
INSERT INTO [Exam Board] ([Exam Boards]) VALUES ('WJEC');

INSERT INTO Course ([Student Number], [Course Name], [Exam Boards]) VALUES
('1001', 'Computer Science', 'BCS');
INSERT INTO Course ([Student Number], [Course Name], [Exam Boards]) VALUES
('1001', 'Maths', 'EdExcel');
INSERT INTO Course ([Student Number], [Course Name], [Exam Boards]) VALUES
('1001', 'Physics', 'OCR');
INSERT INTO Course ([Student Number], [Course Name], [Exam Boards]) VALUES
('1002', 'Maths', 'AQA');
INSERT INTO Course ([Student Number], [Course Name], [Exam Boards]) VALUES
('1002', 'Biology', 'WJEC');
INSERT INTO Course ([Student Number], [Course Name], [Exam Boards]) VALUES
('1002', 'Music', 'AQA');
INSERT INTO Course ([Student Number], [Course Name], [Exam Boards]) VALUES
('1003', 'Computer Science', 'BCS');

INSERT INTO Course ([Student Number], [Course Name], [Exam Boards]) VALUES
('1003', 'Maths', 'EdExcel');
INSERT INTO Course ([Student Number], [Course Name], [Exam Boards]) VALUES
('1003', 'Physics', 'OCR');
INSERT INTO Course ([Student Number], [Course Name], [Exam Boards]) VALUES
('1004', 'Maths', 'AQA');
INSERT INTO Course ([Student Number], [Course Name], [Exam Boards]) VALUES
('1004', 'Physics', 'OCR');
INSERT INTO Course ([Student Number], [Course Name], [Exam Boards]) VALUES
('1004', 'Biology', 'WJEC');
INSERT INTO Course ([Student Number], [Course Name], [Exam Boards]) VALUES
('1005', 'Computer Science', 'BCS');
INSERT INTO Course ([Student Number], [Course Name], [Exam Boards]) VALUES
('1005', 'Maths', 'EdExcel');
INSERT INTO Course ([Student Number], [Course Name], [Exam Boards]) VALUES
('1005', 'Music', 'AQA');

Referential Integrity

The following checks have been performed in the created table, in order to ensure that referential
integrity is properly enforced:

- Ensuring the no duplicate teachers can be added in the Teacher table
- Ensuring that no duplicate students can be added in the Student table
- Ensuring that no duplicate exam boards can be added in the Exam Board table
- Ensuring that no duplicate combinations of student number and course name can be added in

the courses table.
- Ensuring the added row in the courses table represents existing students (student table),

courses (teachers table) and exam boards (exam board table)

The script used for the testing is the below:

-- Add same course twice under different teacher in the teacher table
INSERT INTO Teacher ([Course Name], [Teacher Name]) VALUES ('Computer
Science', 'Ms Jones');

-- Add the same student twice with different data in the student table
INSERT INTO [Student] ([Student Number], [Student Name], [Exam Score],
[Support], [Date of Birth]) VALUES ('1001', 'Bob Baker2', '78', 0, '2001-
08-12')

-- Add the same exam board twice in the exam board table
INSERT INTO [Exam Board] ([Exam Boards]) VALUES ('EdExcel');

-- Add the same combination of course name and student id the course table
INSERT INTO Course ([Student Number], [Course Name], [Exam Boards]) VALUES
('1001', 'Computer Science', 'EdExcel');

-- Attempt to add an entry in the course table while the student does not
exist
INSERT INTO Course ([Student Number], [Course Name], [Exam Boards]) VALUES
('1007', 'Computer Science', 'BCS');

-- Attempt to add an entry in the course table while the course name does
not exist
INSERT INTO Course ([Student Number], [Course Name], [Exam Boards]) VALUES
('1001', 'Computer Science2', 'BCS');

-- Attempt to add an entry in the course table while the exam board does
not exist
INSERT INTO Course ([Student Number], [Course Name], [Exam Boards]) VALUES
('1001', 'Music', 'BCSAAA');

Final Notes and Working Theory

The final notes and the working theory is the following:

- Additional tables created are to ensure referential integrity (e.g. exam board)
- It is good practice to create global unique identifiers (UUIDs/GUIDs) in order to ensure

uniqueness of primary IDs. This would also avoid the presence of composite keys. Though these
have not been created as we followed the exact columns provided in the exercise.

- Normalization may be performed in different ways and results between two database designers
may differ.

- To ensure referential integrity apart from creating the primary and secondary keys we could also
follow a different approach where the respective record in created automatically if it is missing
on a table, during the insert queries. For example, in our design if we try to add a new student
with a course under the table courses the query will return an error as the new student needs to
be created in the student table first. If we create a trigger then we can ask the database to
create the new student (providing some additional details), instead of returning the error.

	Normalisation Task
	1NF
	2NF
	3NF
	References

	Data Build Task
	Normalisation
	Database Creation
	Data Insertion
	Referential Integrity
	Final Notes and Working Theory

